Neural networks with non-uniform embedding and explicit validation phase to assess Granger causality
نویسندگان
چکیده
A challenging problem when studying a dynamical system is to find the interdependencies among its individual components. Several algorithms have been proposed to detect directed dynamical influences between time series. Two of the most used approaches are a model-free one (transfer entropy) and a model-based one (Granger causality). Several pitfalls are related to the presence or absence of assumptions in modeling the relevant features of the data. We tried to overcome those pitfalls using a neural network approach in which a model is built without any a priori assumptions. In this sense this method can be seen as a bridge between model-free and model-based approaches. The experiments performed will show that the method presented in this work can detect the correct dynamical information flows occurring in a system of time series. Additionally we adopt a non-uniform embedding framework according to which only the past states that actually help the prediction are entered into the model, improving the prediction and avoiding the risk of overfitting. This method also leads to a further improvement with respect to traditional Granger causality approaches when redundant variables (i.e. variables sharing the same information about the future of the system) are involved. Neural networks are also able to recognize dynamics in data sets completely different from the ones used during the training phase.
منابع مشابه
The Impact of Human Capital on FDI with New Evidence from Bootstrap Panel Granger Causality Analysis
T his study evaluates the causality relationship between human capital and foreign direct investment inflow in twenty-six OIC (the Organization of Islamic Cooperation) countries over the period 1970–2014. We employed the panel Granger non-causality testing approach of Kònya (2006) that is based on seemingly unrelated regression (SUR) systems, and Wald tests with country specific boot...
متن کاملIdentification of feedback loops in neural networks based on multi-step Granger causality
MOTIVATION Feedback circuits are crucial network motifs, ubiquitously found in many intra- and inter-cellular regulatory networks, and also act as basic building blocks for inducing synchronized bursting behaviors in neural network dynamics. Therefore, the system-level identification of feedback circuits using time-series measurements is critical to understand the underlying regulatory mechanis...
متن کاملStatistical Analysis of Single-Trial Granger Causality Spectra
Granger causality analysis is becoming central for the analysis of interactions between neural populations and oscillatory networks. However, it is currently unclear whether single-trial estimates of Granger causality spectra can be used reliably to assess directional influence. We addressed this issue by combining single-trial Granger causality spectra with statistical inference based on gener...
متن کاملAnalyzing information flow in brain networks with nonparametric Granger causality
Multielectrode neurophysiological recording and high-resolution neuroimaging generate multivariate data that are the basis for understanding the patterns of neural interactions. How to extract directions of information flow in brain networks from these data remains a key challenge. Research over the last few years has identified Granger causality as a statistically principled technique to furni...
متن کاملGranger Causality: Basic Theory and Application to Neuroscience
Multi-electrode neurophysiological recordings produce massive quantities of data. Multivariate time series analysis provides the basic framework for analyzing the patterns of neural interactions in these data. It has long been recognized that neural interactions are directional. Being able to assess the directionality of neuronal interactions is thus a highly desired capability for understandin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 71 شماره
صفحات -
تاریخ انتشار 2015